OptimumG announced this week their move towards a subscription based software licensing on all of their software solutions including OptimumKinematics, OptimumTire and OptimumDynamics. This move was done in order to...
Characterising tracks for set-up solutions
OptimumG’s Claude Rouelle explains why, and where, you might want to make use of an asymmetric set-up on your racecar. Having difficulties convincing someone to use more camber on the right-hand side than on the left for a counter-clockwise circuit; running higher tyre pressure on one side than the other; using different damper settings?
Claude Rouelle’s 101 tips for Formula Student competition participants
Building a Formula Student car? Then you need to read OptimumG engineer Claude Rouelle’s 101 top tips for teams chasing FS glory. In Part 1 of this new mini-series he runs through his first 25 points.
The four secrets for chassis happiness
Claude Rouelle explores the possibilities of qualifying and quantifying a racecar design or set-up through grip, balance, control and stability. In the racing industry, I often find engineers that perform simulations in the same way barmen create cocktails: by (sometimes randomly) mixing ingredients and varying quantities until they eventually find something that matches their taste.
Getting more from your yaw diagrams
Our analysis of yaw versus lateral acceleration continues with Claude Rouelle’s explanation of the yaw moment diagram and how to interpret it. We will start this article by reviewing some basic concepts. As we have seen in the previous articles on the yaw moment versus lateral acceleration method, an understeering car is defined as a car that doesn’t have enough yaw moment and an oversteering car is a car with too much yaw moment.
Slide rules: analysing an oversteering car
What makes a car quick in steady state and in transient? Claude Rouelle develops his analysis of lateral acceleration and yaw moment variation. In April’s RE (V27N4), we saw that there are 12 causes for the yaw moment: four tyre lateral forces Fy, four tyre longitudinal forces Fx; and four tyre self-alignment moments Mz.
Getting to grips with your yaw moments
One important part of a racecar performance engineer’s job is lap time simulation. Simulating and comparing the effect of car design and set-up parameters on the lap time is essential. With the many inputs and outputs that exist in such simulation, it is always worth having metrics other than the lap time to know if and why we improve the car’s performance.
Intelligent Testing to Advance Vehicle Performance
In February 2010 OptimumG in collaboration with Oreste Berta S.A. performed a comprehensive vehicle dynamics test in Argentina. The primary goals of this test were to characterize vehicle performance and demonstrate what is possible with advanced data acquisition.